To find the cube root of a negative number in Python, you can use the cbrt() function from the numpy module or the pow() function from the math module or the ** operator.
Here’s an example of how to use the cbrt() function from the numpy module to find the cube root of a negative number in Python:
import numpy as np
def cube_root(x):
    return np.cbrt(x)
print(cube_root(-8))  # Output: (-2.0+0j)
print(cube_root(-27))  # Output: (-3.0+0j)
print(cube_root(-64))  # Output: (-4.0+0j)
pow() function to find the cube root of a negative number in Python
Here’s an example of how to use the pow() function to find the cube root of a negative number in Python:
import math
def cube_root(x):
    return pow(x, 1/3)
print(cube_root(-8))  # Output: (-2+0j)
print(cube_root(-27))  # Output: (-3+0j)
print(cube_root(-64))  # Output: (-4+0j)
** operator to find the cube root of a negative number in Python
you can also use the ** operator to find the cube root of a negative number in Python. Here’s an example:
def cube_root(x):
    return x ** (1/3)
print(cube_root(-8))  # Output: -2.0
print(cube_root(-27))  # Output: -3.0
print(cube_root(-64))  # Output: -4.0
Cube root of a negative number returns a complex number
Yes, that’s correct. When you try to find the cube root of a negative number in Python, the result is a complex number. This is because a negative number does not have a real cube root, as the cube of a real number is always positive.
For example, when you try to find the cube root of -8 using the cbrt() function from the numpy module, the result is (-2+0j), which is a complex number with a real part of -2 and an imaginary part of 0.
Similarly, when you try to find the cube root of -27 using the pow() function from the math module or the ** operator, the result is (-3+0j), which is a complex number with a real part of -3 and an imaginary part of 0.
To get the real part of the result as a real number, you can use the real attribute of the result. For example:
import numpy as np
def cube_root(x):
    return np.cbrt(x).real
print(cube_root(-8))  # Output: -2.0
print(cube_root(-27))  # Output: -3.0
print(cube_root(-64))  # Output: -4.0
import math
def cube_root(x):
    return pow(x, 1/3).real
print(cube_root(-8))  # Output: -2.0
print(cube_root(-27))  # Output: -3.0
print(cube_root(-64))  # Output: -4.0